Cập nhật lúc: 17:53 23-10-2018 Mục tin: LỚP 6
Xem thêm:
LÝ THUYẾT VÀ BÀI TẬP
CHIA HAI LŨY THỪA CÙNG CƠ SỐ
A. Tóm tắt kiến thức Chia hai lũy thừa cùng cơ số:
1. \({a^m}\;:{\rm{ }}{a^n}\; = {\rm{ }}{a^{m{\rm{ }}-{\rm{ }}n\;}}\left( {a{\rm{ }} \ne {\rm{ }}0,{\rm{ }}m{\rm{ }} \ge {\rm{ }}n{\rm{ }}} \right).\)
Quy ước: \({a^0}\; = {\rm{ }}1{\rm{ }}\left( {a{\rm{ }} \ne {\rm{ }}0} \right).\)
Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và lấy số mũ của số bị chia trừ đi số mũ của số chia.
2. Mọi số tự nhiên đều viết được dưới dạng tổng các lũy thừa của 10:
\(\begin{array}{*{20}{l}}{abcd{\rm{ }} = {\rm{ }}a{\rm{ }}.{\rm{ }}{{10}^3}\; + {\rm{ }}b{\rm{ }}.{\rm{ }}{{10}^2}\; + {\rm{ }}c{\rm{ }}.{\rm{ }}10{\rm{ }} + {\rm{ }}d;}\\{2475{\rm{ }} = {\rm{ }}2.1000{\rm{ }} + {\rm{ }}4.100{\rm{ }} + {\rm{ }}7.10{\rm{ }} + {\rm{ }}5}\\{ = {\rm{ }}{{2.10}^3}\; + {\rm{ }}4.{\rm{ }}{{10}^2}\; + {\rm{ }}{{7.10}^0}\; + {\rm{ }}{{5.10}^0}}\end{array}\)
B. Bài tập
Bài 1. (Trang 30 Toán 6 tập 1 chương 1)
Viết kết quả mỗi phép tính sau dưới dạng một lũy thừa:
\(a){\rm{ }}{3^8}\;:{\rm{ }}{3^4};{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}b){\rm{ }}{10^{8\;}}:{\rm{ }}{10^2};{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;c){\rm{ }}{a^6}\;:{\rm{ }}a{\rm{ }}\left( {a{\rm{ }} \ne {\rm{ }}0{\rm{ }}} \right)\)
Giải bài:
Áp dụng quy tắc \({a^m}\;:{\rm{ }}{a^n}\; = {\rm{ }}{a^{m{\rm{ }}-{\rm{ }}n\;}}\left( {a{\rm{ }} \ne {\rm{ }}0,{\rm{ }}m{\rm{ }} \ge {\rm{ }}n{\rm{ }}} \right).\)
\(\begin{array}{*{20}{l}}{a){\rm{ }}{3^8}\;:{\rm{ }}{3^4}\; = {\rm{ }}{3^{8{\rm{ }}-{\rm{ }}4\;}} = {\rm{ }}{3^4}\; = {\rm{ }}81;}\\{b){\rm{ }}{{10}^8}\;:{\rm{ }}{{10}^2}\; = {\rm{ }}{{10}^{8{\rm{ }}-{\rm{ }}2\;}} = {\rm{ }}{{10}^{6\;}} = {\rm{ }}1000000}\\{c){\rm{ }}{a^{6\;}}:{\rm{ }}a{\rm{ }} = {\rm{ }}{a^{6{\rm{ }}-{\rm{ }}1}}\; = {\rm{ }}{a^5}}\end{array}\)
Bài 2. (Trang 30 Toán 6 tập 1 chương 1)
Tính bằng hai cách:
Cách 1: Tính số bị chia, tính số chia rồi tính thương.
Cách 2: Chia hai lũy thừa cùng cơ số rồi tính kết quả.
\(a){\rm{ }}210{\rm{ }}:{\rm{ }}28;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;b){\rm{ }}46{\rm{ }}:{\rm{ }}43{\rm{ }};{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;c){\rm{ }}85{\rm{ }}:{\rm{ }}84;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;d){\rm{ }}74{\rm{ }}:{\rm{ }}74.\)
Giải bài:
Lưu ý: Cách 1: Ta đổi 2 lũy thừa ra số tự nhiên sau đó chia hai số với nhau như bình thường
a) Cách 1: \(1024{\rm{ }}:{\rm{ }}256{\rm{ }} = {\rm{ }}4.\) Cách 2: \({2^{10}}\;:{\rm{ }}{2^8}\; = {\rm{ }}{2^{10{\rm{ }}-{\rm{ }}8}}\; = {\rm{ }}{2^2}\; = {\rm{ }}4;\)
b) Cách 1: \(4096{\rm{ }}:{\rm{ }}64{\rm{ }} = {\rm{ }}64\). Cách 2: \({4^6}\;:{\rm{ }}{4^3}\; = {\rm{ }}{4^{6{\rm{ }}-{\rm{ }}3\;}} = {\rm{ }}{4^3}\; = {\rm{ }}64;\)
c) Cách 1: \(32768{\rm{ }}:{\rm{ }}4096{\rm{ }} = {\rm{ }}8.\) Cách 2: \({8^5}\;:{\rm{ }}{8^4}\; = {\rm{ }}{8^{5{\rm{ }}-{\rm{ }}4}}\; = {\rm{ }}{8^1}\; = {\rm{ }}8;\)
d) Cách 1: \(2401{\rm{ }}:{\rm{ }}2401{\rm{ }} = {\rm{ }}1.\) Cách 2: \({7^4}\;:{\rm{ }}{7^4}\; = {\rm{ }}{7^{4{\rm{ }}-{\rm{ }}4}}\; = {\rm{ }}{7^0}\; = {\rm{ }}1.\)
Bài 3. (Trang 30 Toán 6 tập 1 chương 1)
Điền chữ Đ (đúng) hoặc chữ S (sai) vào ô vuông:
a) \({3^3}\;.{\rm{ }}{3^4}\;\)bằng: \({3^{12}}\; \ldots ,{\rm{ }}{9^{12}}\; \ldots ,{\rm{ }}{3^7} \ldots ,{\rm{ }}{6^7}\; \ldots \)
b) \({5^5}\;:{\rm{ }}5\) bằng: \({5^{5\;}} \ldots ,{\rm{ }}{5^4}\; \ldots ,{\rm{ }}{5^3}\; \ldots ,{\rm{ }}{1^4}\; \ldots \)
c) \({2^3}\;.{\rm{ }}{4^2}\) bằng: \({8^6}\; \ldots ,{\rm{ }}{6^5}\; \ldots ,{\rm{ }}{2^7}\; \ldots ,{\rm{ }}{2^6}\; \ldots \)
Giải bài
Áp dụng các quy tắc: am. an = am + n và am : an = am – n (a ≠ 0, m ≥ n)
a) \({3^3}\;.{\rm{ }}{3^4}\;\) bằng:
b) \({5^5}\;:{\rm{ }}5\) bằng:
c) \({2^3}\;.{\rm{ }}{4^2}\)2 bằng:
Bài 4. (Trang 30 Toán 6 tập 1 chương 1)
Viết các số: 987; 2564; abcde dưới dạng tổng các lũy thừa của 10.
Giải bài:
\(\begin{array}{*{20}{l}}{987{\rm{ }} = {\rm{ }}9{\rm{ }}.{\rm{ }}{{10}^{2\;}} + {\rm{ }}8{\rm{ }}.{\rm{ }}10{\rm{ }} + {\rm{ }}7;}\\{2564{\rm{ }} = {\rm{ }}2{\rm{ }}.{\rm{ }}{{10}^3}\; + {\rm{ }}5{\rm{ }}.{\rm{ }}{{10}^2}\; + {\rm{ }}6{\rm{ }}.{\rm{ }}10{\rm{ }} + {\rm{ }}4;}\\{\overline {abcde} = {\rm{ }}a{\rm{ }}.{\rm{ }}{{10}^4}\; + {\rm{ }}b{\rm{ }}.{\rm{ }}{{10}^{3\;}} + {\rm{ }}c{\rm{ }}.{\rm{ }}{{10}^2}\; + {\rm{ }}d{\rm{ }}.{\rm{ }}10{\rm{ }} + {\rm{ }}e}\end{array}\)
Bài 5. (Trang 30 Toán 6 tập 1 chương 1)
Tìm số tự nhiên c, biết rằng với mọi \(n \in N*\) ta có:
\(a){\rm{ }}{c^{n\;}} = {\rm{ }}1;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}b){\rm{ }}{c^n}\; = {\rm{ }}0.\)
Giải bài :
Các em chú ý: \(N*{\rm{ }} = {\rm{ }}1{\rm{ }},{\rm{ }}2{\rm{ }},{\rm{ }}3{\rm{ }},{\rm{ }}4 \ldots \)
\(a){\rm{ }}c{\rm{ }} = {\rm{ }}1;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}b){\rm{ }}c{\rm{ }} = {\rm{ }}0\)
Bài 6. (Trang 30 Toán 6 tập 1 chương 1)
Số chính phương là số bằng bình phương của một số tự nhiên (ví dụ: 0, 1, 4, 9, 16…). Mỗi tổng sau có là một số chính phương không?
\(\begin{array}{*{20}{l}}{a){\rm{ }}{1^3}\; + {\rm{ }}{2^3};}\\{b){\rm{ }}{1^3}\; + {\rm{ }}{2^3}\; + {\rm{ }}{3^3};}\\{c){\rm{ }}{1^3}\; + {\rm{ }}{2^3}\; + {\rm{ }}{3^3}\; + {\rm{ }}{4^3}.}\end{array}\)
Giải bài :
Trước hết hãy tính tổng.
\(a){\rm{ }}{1^3}\; + {\rm{ }}{2^3} = {\rm{ }}1{\rm{ }} + {\rm{ }}8{\rm{ }} = {\rm{ }}9{\rm{ }} = {3^2}.{\rm{ }}\)Vậy tổng \({1^3}\; + {\rm{ }}{2^3}\;\) là một số chính phương.
\(b){\rm{ }}{1^3}\; + {\rm{ }}{2^3}\; + {\rm{ }}{3^3} = {\rm{ }}1{\rm{ }} + {\rm{ }}8{\rm{ }} + {\rm{ }}27{\rm{ }} = {\rm{ }}{3^6}\; = {\rm{ }}{6^2}.{\rm{ }}\)Vậy \({1^3}\; + {\rm{ }}{2^3}\; + {\rm{ }}{3^3}\;\)là một số chính phương.
\(c){\rm{ }}{1^3}\; + {\rm{ }}{2^3}\; + {\rm{ }}{3^3}\; + {\rm{ }}{4^3} = {\rm{ }}1{\rm{ }} + {\rm{ }}8{\rm{ }} + {\rm{ }}27{\rm{ }} + {\rm{ }}64{\rm{ }} = {\rm{ }}100{\rm{ }} = {\rm{ }}{10^2}\)
Vậy \({1^3}\; + {\rm{ }}{2^3}\; + {\rm{ }}{3^3}\; + {\rm{ }}{4^3}\) cũng là số chính phương.
Tất cả nội dung bài viết. Các em hãy xem thêm và tải file chi tiết dưới đây:
>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết này sẽ cung cấp cho các em các bài tập để ôn tập về lũy thừa đã học, bao gồm các dạng cơ bản như LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN – VẬN DỤNG, TÌM CHỮ SỐ TẬN CÙNG, SO SÁNH HAI LŨY THỪA
Bài viết cung cấp cho các em lý thuyết về một phần kiến thức nâng cao là so sánh hai lũy thừa, kèm thêm các bài tập có hướng dẫn để các em ôn tập và củng cố
Bài viết này cung cấp cho các em một phần kiến thức nâng cao liên quan đến lũy thừa đó là cách tìm chữ số tận cùng của lũy thừa. Bài viết cũng kèm theo các bài tập có hướng dẫn để các em củng cố
Bài viết cung cấp một hệ thống các bài tập có đáp án và các bài tự giải về chuyên đề chia hai lũy thừa cùng cơ số để các em luyện tập, củng cố phần kiến thức này
Bài viết gồm đầy đủ phần lý thuyết về những kiến thức nâng cao của các dạng bài Chia hai lũy thừa cùng cơ số. Ngoài ra, bài viết có rất nhiều các dạng bài nâng cao về chia hai lũy thừa cùng cơ số như So sánh hai lũy thừa, tìm các chữ số tận cùng của một lũy thừa....
Bài viết cung cấp các bài tập bổ trợ kèm lời giải chi tiết về chia hai lũy thừa cùng cơ số, giúp các em có thể nắm chắc và hiểu sâu bài học