Cập nhật lúc: 09:48 28-06-2018 Mục tin: LỚP 11
Xem thêm:
Ta thường đặt ẩn phụ để đưa phương trình lượng giác về phương trình đại số để giải quyết bài toán.
- Khi gặp phương trình chỉ chứa một hàm số lượng giác thì ta thường đặt \(t = \sin x,\,\,t = \cos x,\,\,t = \tan x,\,\,t = \cot x\), tùy theo hàm lượng giác trong phương trình.
- Khi gặp phương trình lượng giác \(R\left( {\tan x,\cot x,\sin 2x,\cos 2x,\tan 2x} \right)\), với R là hàm hữu tỉ, thì đặt \(t = \tan x\), lúc đó \(\tan 2x = \frac{{2t}}{{1 - {t^2}}};\sin 2x = \frac{{2t}}{{1 + {t^2}}};\cos 2x = \frac{{1 - {t^2}}}{{1 + {t^2}}}\).
- Khi gặp phuong trình đối xứng theo sinx, cosx, ta thường đặt \(t = \sin x + \cos x\), hoặc \(t = \sin x - \cos x\). Nếu phương trình đối xứng theo \(\tan x, \cot x\), thì đặt \(t=\tan x + \cot x\).
- Khi gặp phương trình đẳng cấp ta thường đặt \(t=\tan x\).










>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Chúng ta thực chất đã làm quen với phương pháp đặt ẩn phụ để giải phương trình lượng giác trong các chủ đề: - Phương trình bậc hai và bậc cao đối với một hàm số lượng giác - Phương trình đẳng cấp bậc hai và bậc cao đối với sin và cos. - Phương trình đối xứng Trong bài toàn này chúng ta xét thêm các trường hợp khác, bao gồm:
Một số bài toán về phương trình lượng giác mà cách giải tuỳ theo đặc thù của phương trình, chứ không nằm ở trong phương pháp đã nêu ở hầu hết các sách giáo khoa. Một số phương trình lượng giác thể hiện tính không mẫu mực ở ngay dạng của chúng, nhưng cũng có những phương trình ta thấy dạng rất bình thường nhưng cách giải lại không mẫu mực. Sau đây là những phương trình lượng giác có cách giải không mẫu mực thường gặp. Nguồn: Nguyễn Văn Tuấn Anh
Một số bài toán về phương trình lượng giác mà cách giải tuỳ theo đặc thù của phương trình, chứ không nằm ở trong phương pháp đã nêu ở hầu hết các sách giáo khoa. Một số phương trình lượng giác thể hiện tính không mẫu mực ở ngay dạng của chúng, nhưng cũng có những phương trình ta thấy dạng rất bình thường nhưng cách giải lại không mẫu mực. Sau đây là những phương trình lượng giác có cách giải không mẫu mực thường gặp. Nguồn: ST